Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 674
Filtrar
1.
Small ; : e2312210, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600878

RESUMO

Oxygen-vacancy (Ov) engineering is an effective strategy to manipulate the electronic configuration of catalysts for electrochemical nitrogen reduction reaction (eNRR). The influence of the stable facet on the electronic configuration of Ov is widely studied, however, the effect of the reactive facet on the local electron density of Ov is unveiled. In this work, an eNRR electrode R(111)-TiO2/HGO is provided with a high proportion exposed reactive facet (111) of rutile-TiO2 (denoted as R(111)-TiO2) nanocrystals with Ov anchored in hierarchically porous graphite oxide (HGO) nanofilms. The R(111)-TiO2/HGO exhibits excellent eNRR performance with an NH3 yield rate of 20.68 µg h-1 cm-2, which is ≈20 times the control electrode with the most stable facet (110) exposed (R(110)-TiO2/HGO). The experimental data and theoretical simulations reveal that the crystal facet (111) has a positive effect on regulating the local electron density around the oxygen vacancy and the two adjacent Ti-sites, promoting the π-back-donation, minimizing the eNRR barrier, and transforming the rate determination step to *NNH→*NNHH. This work illuminates the effect of crystal facet on the performance of eNRR, and offers a novel strategy to design efficient eNRR catalysts.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38570431

RESUMO

The impact of biogas residual biochar (BRB) on the humification and carbon balance process of co-composting of hog slurry (HGS) and wheat straw (WTS) was examined. The 50-day humification process was significantly enhanced by the addition of BRB, particular of 5% BRB, as indicated by the relatively higher humic acid content (67.28 g/kg) and humification ratio (2.31) than other treatments. The carbon balance calculation indicated that although BRB addition increased 22.16-46.77% of C lost in form of CO2-C, but the 5% BRB treatment showed relatively higher C fixation and lower C loss than other treatments. In addition, the BRB addition reshaped the bacterial community structure during composting, resulting in increased abundances of Proteobacteria (25.50%) during the thermophilic phase and Bacteroidetes (33.55%) during the maturation phase. Combined these results with biological mechanism analysis, 5% of BRB was likely an optimal addition for promoting compost humification and carbon fixation in practice.

3.
J Cancer Res Clin Oncol ; 150(4): 175, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573518

RESUMO

BACKGROUND: The advent of immune checkpoint inhibitors has dramatically changed the treatment paradigm for advanced non-small-cell lung cancer (NSCLC). Due to the complexity and diversity of stage III disease, the inclusion of immune checkpoint inhibitors (ICIs) in neoadjuvant treatment regimens is also required. However, immune-related adverse events (irAEs) limit the application of ICIs to a certain extent. Bronchopleural fistula (BPF) is a serious and fatal complication after pneumonectomy that is rarely reported, especially in patients who accept neoadjuvant immunotherapy or chemoimmunotherapy. CASE PRESENTATION: Herein, we reported four patients with postoperative BPF who received a neoadjuvant regimen of sintilimab plus chemotherapy. Postoperative BPF occurred in the late stage in three patients; one patient underwent bronchoscopic fistula repair, and the fistula was closed well after surgery, and the other two patients gradually recovered within 1-2 months after symptomatic treatment with antibiotics. One patient with BPF after left pneumonectomy died of respiratory failure due to pulmonary infection. We also reviewed the literature on the development of postoperative BPF in patients receiving immuno-neoadjuvant therapy to discuss the clinical process further, postoperative pathological changes, as well as risk factors of BPF patients. CONCLUSIONS: Central type lung cancer with stage III may be the risk factors of BPF in cases of neoadjuvant immunochemotherapy for lung cancers patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Fístula , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Terapia Neoadjuvante/efeitos adversos , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/cirurgia , Imunoterapia/efeitos adversos , Complicações Pós-Operatórias/etiologia
4.
Hortic Res ; 11(4): uhae049, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38645683

RESUMO

Grafting is a traditional and significant strategy to suppress soil-borne diseases, such as the crown gall disease caused by tumorigenic Agrobacterium and Rhizobium. Root exudates and the rhizosphere microbiome play critical roles in controlling crown gall disease, but their roles in suppressing crown gall disease in grafted plants remain unclear. Here, disease-susceptible cherry rootstock 'Gisela 6' and disease-resistant cherry rootstock 'Haiying 1' were grafted onto each other or self-grafted. The effect of their root exudates on the soil microbiome composition and the abundance of pathogenic Agrobacterium were studied. Grafting onto the disease-resistant rootstock helped to reduce the abundance of pathogenic Agrobacterium, accompanied by altering root exudation, enriching potential beneficial bacteria, and changing soil function. Then, the composition of the root exudates from grafted plants was analyzed and the potential compounds responsible for decreasing pathogenic Agrobacterium abundance were identified. Based on quantitative measurement of the concentrations of the compounds and testing the impacts of supplied pure chemicals on abundance and chemotaxis of pathogenic Agrobacterium and potential beneficial bacteria, the decreased valine in root exudates of the plant grafted onto resistant rootstock was found to contribute to decreasing Agrobacterium abundance, enriching some potential beneficial bacteria and suppressing crown gall disease. This study provides insights into the mechanism whereby grafted plants suppress soil-borne disease.

5.
J Vis Exp ; (205)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497647

RESUMO

Measuring bacterial colonization on Arabidopsis thaliana root is one of the most frequent experiments in plant-microbe interaction studies. A standardized method for measuring bacterial colonization in the rhizosphere is necessary to improve reproducibility. We first cultured sterile A.thaliana in hydroponic conditions and then inoculated the bacterial cells in the rhizosphere at a final concentration of OD600 of 0.01. At 2 days post-inoculation, the root tissue was harvested and washed three times in sterile water to remove the uncolonized bacterial cells. The roots were then weighed, and the bacterial cells colonized on the root were collected by vortex. The cell suspension was diluted in a gradient with a phosphate-buffered saline (PBS) buffer, followed by plating onto a Luria-Bertani (LB) agar medium. The plates were incubated at 37 °C for 10 h, and then, the single colonies on LB plates were counted and normalized to indicate the bacterial cells colonized on roots. This method is used to detect bacterial colonization in the rhizosphere in mono-interaction conditions, with good reproducibility.


Assuntos
Arabidopsis , Hidroponia , Reprodutibilidade dos Testes , Meios de Cultura , Interações Microbianas
6.
Cell Rep ; 43(4): 114030, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38551966

RESUMO

Trichoderma spp. have evolved the capacity to communicate with plants by producing various secondary metabolites (SMs). Nonhormonal SMs play important roles in plant root development, while specific SMs from rhizosphere microbes and their underlying mechanisms to control plant root branching are still largely unknown. In this study, a compound, anthranilic acid (2-AA), is identified from T. guizhouense NJAU4742 to promote lateral root development. Further studies demonstrate that 2-AA positively regulates auxin signaling and transport in the canonical auxin pathway. 2-AA also partly rescues the lateral root numbers of CASP1pro:shy2-2, which regulates endodermal cell wall remodeling via an RBOHF-induced reactive oxygen species burst. In addition, our work reports another role for microbial 2-AA in the regulation of lateral root development, which is different from its better-known role in plant indole-3-acetic acid biosynthesis. In summary, this study identifies 2-AA from T. guizhouense NJAU4742, which plays versatile roles in regulating plant root development.

7.
Chem Sci ; 15(11): 4140-4145, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487226

RESUMO

For CO2 electroreduction (CO2ER) to C2 compounds, it is generally accepted that the formation of ethylene and ethanol shares the same intermediate, *HCCOH. The majority of studies have achieved high faradaic efficiency (FE) towards ethylene, but faced challenges to get high ethanol FE. Herein, we present an alkyl sulfonate surfactant (e.g., sodium dodecyl sulfonate, SDS) mediated CO2ER to a C2 product over an in situ generated Cu catalyst (Cu@SDS) from SDS-modified Cu(OH)2. It achieves the CO2ER to ethylene as the sole C2 product at low applied voltages with a FE of 55% at -0.6 V vs. RHE and to ethanol as the main product at potentials ≥0.7 V with a maximum FE of 64% and a total C2 FE of 86% at -0.8 V, with a current density of 231 mA cm-2 in a flow cell. Mechanism investigation indicates that SDS modifies the oxidation state of the in situ formed Cu species in Cu@SDS, thus tuning the catalyst activity for CO2ER and lowering the C-C coupling energy barrier; meanwhile, it tunes the adsorption mode of the *HCCOH intermediates on the catalyst, thus mediating the selectivity of CO2ER towards C2 products.

8.
Proc Natl Acad Sci U S A ; 121(14): e2314231121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527197

RESUMO

Despite experimental and observational studies demonstrating that biodiversity enhances primary productivity, the best metric for predicting productivity at broad geographic extents-functional trait diversity, phylogenetic diversity, or species richness-remains unknown. Using >1.8 million tree measurements from across eastern US forests, we quantified relationships among functional trait diversity, phylogenetic diversity, species richness, and productivity. Surprisingly, functional trait and phylogenetic diversity explained little variation in productivity that could not be explained by tree species richness. This result was consistent across the entire eastern United States, within ecoprovinces, and within data subsets that controlled for biomass or stand age. Metrics of functional trait and phylogenetic diversity that were independent of species richness were negatively correlated with productivity. This last result suggests that processes that determine species sorting and packing are likely important for the relationships between productivity and biodiversity. This result also demonstrates the potential confusion that can arise when interdependencies among different diversity metrics are ignored. Our findings show the value of species richness as a predictive tool and highlight gaps in knowledge about linkages between functional diversity and ecosystem functioning.


Assuntos
Biodiversidade , Florestas , Biomassa , Ecossistema , Filogenia , Estados Unidos
9.
BMC Med Imaging ; 24(1): 62, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486185

RESUMO

OBJECTIVE: Early diagnosis of osteoporosis is crucial to prevent osteoporotic vertebral fracture and complications of spine surgery. We aimed to conduct a hybrid transformer convolutional neural network (HTCNN)-based radiomics model for osteoporosis screening in routine CT. METHODS: To investigate the HTCNN algorithm for vertebrae and trabecular segmentation, 92 training subjects and 45 test subjects were employed. Furthermore, we included 283 vertebral bodies and randomly divided them into the training cohort (n = 204) and test cohort (n = 79) for radiomics analysis. Area receiver operating characteristic curves (AUCs) and decision curve analysis (DCA) were applied to compare the performance and clinical value between radiomics models and Hounsfield Unit (HU) values to detect dual-energy X-ray absorptiometry (DXA) based osteoporosis. RESULTS: HTCNN algorithm revealed high precision for the segmentation of the vertebral body and trabecular compartment. In test sets, the mean dice scores reach 0.968 and 0.961. 12 features from the trabecular compartment and 15 features from the entire vertebral body were used to calculate the radiomics score (rad score). Compared with HU values and trabecular rad-score, the vertebrae rad-score suggested the best efficacy for osteoporosis and non-osteoporosis discrimination (training group: AUC = 0.95, 95%CI 0.91-0.99; test group: AUC = 0.97, 95%CI 0.93-1.00) and the differences were significant in test group according to the DeLong test (p < 0.05). CONCLUSIONS: This retrospective study demonstrated the superiority of the HTCNN-based vertebrae radiomics model for osteoporosis discrimination in routine CT.


Assuntos
Osteoporose , Fraturas por Osteoporose , Humanos , 60570 , Estudos Retrospectivos , Redes Neurais de Computação , Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/diagnóstico por imagem , Absorciometria de Fóton , Tomografia Computadorizada por Raios X , Densidade Óssea , Vértebras Lombares/diagnóstico por imagem
10.
New Phytol ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494698

RESUMO

The rhizosphere microbiome plays critical roles in plant growth and provides promising solutions for sustainable agriculture. While the rhizosphere microbiome frequently fluctuates with the soil environment, recent studies have demonstrated that a small proportion of the microbiome is consistently assembled in the rhizosphere of a specific plant genotype regardless of the soil condition, which is determined by host genetics. Based on these breakthroughs, which involved exploiting the plant-beneficial function of the rhizosphere microbiome, we propose to divide the rhizosphere microbiome into environment-dominated and plant genetic-dominated components based on their different assembly mechanisms. Subsequently, two strategies to explore the different rhizosphere microbiome components for agricultural production are suggested, that is, the precise management of the environment-dominated rhizosphere microbiome by agronomic practices, and the elucidation of the plant genetic basis of the plant genetic-dominated rhizosphere microbiome for breeding microbiome-assisted crop varieties. We finally present the major challenges that need to be overcome to implement strategies for modulating these two components of the rhizosphere microbiome.

11.
J Exp Bot ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497798

RESUMO

Nitrogen fertilizer is widely used in agriculture to boost crop yields, plant growth-promoting rhizobacteria (PGPRs) can increase plant nitrogen use efficiency through nitrogen fixation and organic nitrogen mineralization. However, it is not known if they can activate the plant uptake of nitrogen. In this study, we investigated the effects of a PGPR strain Bacillus velezensis SQR9-emitted volatile compounds (VCs) on plant nitrogen uptake. Strain SQR9 VCs promoted nitrogen accumulation in both rice and Arabidopsis. In addition, isotope labeling experiments showed that strain SQR9 VCs promoted the absorption of nitrate and ammonium. Several key nitrogen uptake genes were up-regulated by strain SQR9 VCs, such as AtNRT2.1 in Arabidopsis and OsNAR2.1, OsNRT2.3a and OsAMT1 family members in rice, and the deletion of these genes compromised the promoting effect of SQR9 VCs on plant nitrogen absorption. Furthermore, the calcium (Ca2+) and transcription factor NIN-LIKE PROTEIN 7 play an important role in strain SQR9 VCs-promoted nitrate uptake. Taken together, our results suggest that PGPRs can promote nitrogen uptake through regulating the plant's endogenous signaling and nitrogen transport pathways.

12.
Trials ; 25(1): 166, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439027

RESUMO

BACKGROUND: Endovascular thrombectomy (EVT) is a standard treatment for acute ischemic stroke (AIS) with large vessel occlusion. Hypertension and increased blood pressure variability within the first 24 h after successful reperfusion are related to a higher risk of symptomatic intracerebral hemorrhage and higher mortality. AIS patients might suffer from ischemia-reperfusion injury following reperfusion, especially within 24 h. Dexmedetomidine (DEX), a sedative commonly used in EVT, can stabilize hemodynamics by inhibiting the sympathetic nervous system and alleviate ischemia-reperfusion injury through anti-inflammatory and antioxidative properties. Postoperative prolonged sedation for 24 h with DEX might be a potential pharmacological approach to improve long-term prognosis after EVT. METHODS: This single-center, open-label, prospective, randomized controlled trial will include 368 patients. The ethics committee has approved the protocol. After successful reperfusion (modified thrombolysis in cerebral infarction scores 2b-3, indicating reperfusion of at least 50% of the affected vascular territory), participants are randomly assigned to the intervention or control group. In the intervention group, participants will receive 0.1~1.0 µg/kg/h DEX for 24 h. In the control group, participants will receive an equal dose of saline for 24 h. The primary outcome is the functional outcome at 90 days, measured with the categorical scale of the modified Rankin Scale, ranging from 0 (no symptoms) to 6 (death). The secondary outcome includes (1) the changes in stroke severity between admission and 24 h and 7 days after EVT, measured by the National Institute of Health Stroke Scale (ranging from 0 to 42, with higher scores indicating greater severity); (2) the changes in ischemic penumbra volume/infarct volume between admission and 7 days after EVT, measured by neuroimaging scan; (3) the length of ICU/hospital stay; and (4) adverse events and the all-cause mortality rate at 90 days. DISCUSSION: This randomized clinical trial is expected to verify the hypothesis that postoperative prolonged sedation with DEX after successful reperfusion may promote the long-term prognosis of patients with AIS and may reduce the related socio-economic burden. TRIAL REGISTRATION: ClinicalTrials.gov NCT04916197. Prospectively registered on 7 June 2021.


Assuntos
Dexmedetomidina , AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/diagnóstico , AVC Isquêmico/cirurgia , Dexmedetomidina/efeitos adversos , Estudos Prospectivos , Reperfusão , Trombectomia/efeitos adversos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/prevenção & controle , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
Nat Commun ; 15(1): 1907, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429257

RESUMO

Plants are capable of assembling beneficial rhizomicrobiomes through a "cry for help" mechanism upon pathogen infestation; however, it remains unknown whether we can use nonpathogenic strains to induce plants to assemble a rhizomicrobiome against pathogen invasion. Here, we used a series of derivatives of Pseudomonas syringae pv. tomato DC3000 to elicit different levels of the immune response to Arabidopsis and revealed that two nonpathogenic DC3000 derivatives induced the beneficial soil-borne legacy, demonstrating a similar "cry for help" triggering effect as the wild-type DC3000. In addition, an increase in the abundance of Devosia in the rhizosphere induced by the decreased root exudation of myristic acid was confirmed to be responsible for growth promotion and disease suppression of the soil-borne legacy. Furthermore, the "cry for help" response could be induced by heat-killed DC3000 and flg22 and blocked by an effector triggered immunity (ETI) -eliciting derivative of DC3000. In conclusion, we demonstrate the potential of nonpathogenic bacteria and bacterial elicitors to promote the generation of disease-suppressive soils.


Assuntos
Arabidopsis , Pseudomonas syringae , Animais , Estro , Temperatura Alta , Solo
14.
Adv Mater ; : e2400919, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498901

RESUMO

Lead halide perovskites possess great application potential in flexible displays and wearable optoelectronics owing to their prominent optoelectronic properties. However, the intrinsic instability upon moisture, heat, and ultraviolet (UV) light irradiation hinders their development and application. In this work, an ultra-stable CsPbX3 (X = Cl, Br, I) perovskite luminescent filament (PLF) with high stretchability (≈2400%) and luminescence performance (photoluminescence quantum yield (PLQY) of 24.5%, tunable emission spectrum, and high color purity) is introduced by a facile environmental-friendly wet-spinning technology via solvent extraction. Benefiting from the in situ encapsulation of the hydrophobic thermoplastic polyurethane (TPU) and the chelation of Lewis base CO in TPU with Lewis acid Pb2+, the CsPbBr3 PLF demonstrates ultra-high photoluminescence (PL) stability when stored in ambient air and high humidity circumstance, annealed at 50 °C, and dipped in water for 30 days, illuminated under ultraviolet light for 300 min, and immersed in organic solvents and solutions with pH of 1-13 for 5 min, respectively. Impressively, it retains 80% of its initial PL after being recycled five times. Overall, the CsPbX3 PLF demonstrates promising prospects in multifunctional applications, including organic dyes and tensile strain sensing, flexible pattern displays, secondary anti-counterfeiting, and hazard warning systems.

15.
Appl Radiat Isot ; 206: 111243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394811

RESUMO

Carbon nanotube (CNT)-based field emission X-ray source with the advantage of fast start-up response offers the chance to achieve high-frequency X-ray emission. In this study, a high-frequency random pulse X-ray source of CNT cold cathode combined with a channel electron multiplier (CEM) was built, and its direct current (DC) and pulse emission characteristics were tested. The DC measurement results were used for parameter selection for performing pulse experiments. During the DC test, with the conditions of 2.2 kV CEM bias voltage and 25 kV anode voltage, the anode currents are 141, 250, and 300 µA at grid voltages of 290, 387.6, and 432.2 V, respectively; the corresponding grid field values are 1.45, 1.94, and 2.16 V/µm. During the pulse test, the amplitude-frequency response of the X-ray source reaches 3.58 MHz at 3 dB. The developed pulse X-ray source was introduced into the X-ray communication (XCOM), and the experimental communication rate reached 6 Mbps with the bit-error-rate of 1.1 × 10-3. The developed high-frequency pulse CNT-CEM X-ray source has potential applications in XCOM, high-speed X-ray imaging, and other fields.

16.
J Virol ; 98(3): e0004224, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376198

RESUMO

Influenza D virus (IDV) utilizes bovines as a primary reservoir with periodical spillover to other hosts. We have previously demonstrated that IDV binds both 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac). Bovines produce both Neu5,9Ac2 and Neu5Gc9Ac, while humans are genetically unable to synthesize Neu5Gc9Ac. 9-O-Acetylation of sialic acids is catalyzed by CASD1 via a covalent acetyl-enzyme intermediate. To characterize the role of Neu5,9Ac2 and Neu5Gc9Ac in IDV infection and determine which form of 9-O-acetylated sialic acids drives IDV entry, we took advantage of a CASD1 knockout (KO) MDCK cell line and carried out feeding experiments using synthetic 9-O-acetyl sialic acids in combination with the single-round and multi-round IDV infection assays. The data from our studies show that (i) CASD1 KO cells are resistant to IDV infection and lack of IDV binding to the cell surface is responsible for the failure of IDV replication; (ii) feeding CASD1 KO cells with Neu5,9Ac2 or Neu5Gc9Ac resulted in a dose-dependent rescue of IDV infectivity; and (iii) diverse IDVs replicated robustly in CASD1 KO cells fed with either Neu5,9Ac2 or Neu5Gc9Ac at a level similar to that in wild-type cells with a functional CASD1. These data demonstrate that IDV can utilize Neu5,9Ac2- or non-human Neu5Gc9Ac-containing glycan receptor for infection. Our findings provide evidence that IDV has acquired the ability to infect and transmit among agricultural animals that are enriched in Neu5Gc9Ac, in addition to posing a zoonotic risk to humans expressing only Neu5,9Ac2.IMPORTANCEInfluenza D virus (IDV) has emerged as a multiple-species-infecting pathogen with bovines as a primary reservoir. Little is known about the functional receptor that drives IDV entry and promotes its cross-species spillover potential among different hosts. Here, we demonstrated that IDV binds exclusively to 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and non-human 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac) and utilizes both for entry and infection. This ability in effective engagement of both 9-O-acetylated sialic acids as functional receptors for infection provides an evolutionary advantage to IDV for expanding its host range. This finding also indicates that IDV has the potential to emerge in humans because Neu5,9Ac2 is ubiquitously expressed in human tissues, including lung. Thus, results of our study highlight a need for continued surveillance of IDV in humans, as well as for further investigation of its biology and cross-species transmission mechanism.


Assuntos
60548 , Ácidos Neuramínicos , Receptores Virais , Animais , Bovinos , Membrana Celular/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/metabolismo , Orthomyxoviridae/metabolismo , Receptores Virais/metabolismo , Ácidos Siálicos/metabolismo
17.
Addict Biol ; 29(2): e13367, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380757

RESUMO

Alcohol use disorder (AUD) has been associated with attentional deficits and impairments of working memory. Meanwhile, attention and working memory are critical for time perception. However, it remains unclear how time perception alters in AUD patients and how attention and working memory affect their time perception. The current study aims to clarify the time perception characteristics of AUD patients and the cognitive mechanisms underlying their time perception dysfunction. Thirty-one patients (three of them were excluded) with AUD and thirty-one matched controls completed the Time Bisection Task, Attention Network Test and Digital Span Backward Test to assess their abilities in time perception, attention network and working memory, respectively. The results showed that, after controlling for anxiety, depression, and impulsivity, AUD patients had a lower proportion of 'long' responses at intervals of 600, 750, 900, 1050 and 1200 ms. Furthermore, they displayed higher subjective equivalence points and higher Weber ratios compared to controls. Moreover, AUD patients showed impaired alerting and executive control networks as well as reduced working memory resources. Only working memory resources mediated the impact of AUD on time perception. In conclusion, our findings suggested that the duration underestimation in AUD patients is predominantly caused by working memory deficits.


Assuntos
Alcoolismo , Percepção do Tempo , Humanos , Memória de Curto Prazo/fisiologia , Função Executiva/fisiologia , Consumo de Bebidas Alcoólicas
18.
Cancer Commun (Lond) ; 44(4): 455-468, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38421881

RESUMO

BACKGROUND: The initial phase II stuty (NCT03215693) demonstrated that ensartinib has shown clinical activity in patients with advanced crizotinib-refractory, anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC). Herein, we reported the updated data on overall survival (OS) and molecular profiling from the initial phase II study. METHODS: In this study, 180 patients received 225 mg of ensartinib orally once daily until disease progression, death or withdrawal. OS was estimated by Kaplan‒Meier methods with two-sided 95% confidence intervals (CIs). Next-generation sequencing was employed to explore prognostic biomarkers based on plasma samples collected at baseline and after initiating ensartinib. Circulating tumor DNA (ctDNA) was detected to dynamically monitor the genomic alternations during treatment and indicate the existence of molecular residual disease, facilitating improvement of clinical management. RESULTS: At the data cut-off date (August 31, 2022), with a median follow-up time of 53.2 months, 97 of 180 (53.9%) patients had died. The median OS was 42.8 months (95% CI: 29.3-53.2 months). A total of 333 plasma samples from 168 patients were included for ctDNA analysis. An inferior OS correlated significantly with baseline ALK or tumor protein 53 (TP53) mutation. In addition, patients with concurrent TP53 mutations had shorter OS than those without concurrent TP53 mutations. High ctDNA levels evaluated by variant allele frequency (VAF) and haploid genome equivalents per milliliter of plasma (hGE/mL) at baseline were associated with poor OS. Additionally, patients with ctDNA clearance at 6 weeks and slow ascent growth had dramatically longer OS than those with ctDNA residual and fast ascent growth, respectively. Furthermore, patients who had a lower tumor burden, as evaluated by the diameter of target lesions, had a longer OS. Multivariate Cox regression analysis further uncovered the independent prognostic values of bone metastases, higher hGE, and elevated ALK mutation abundance at 6 weeks. CONCLUSION: Ensartinib led to a favorable OS in patients with advanced, crizotinib-resistant, and ALK-positive NSCLC. Quantification of ctDNA levels also provided valuable prognostic information for risk stratification.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Piperazinas , Piridazinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Crizotinibe , Neoplasias Pulmonares/genética , Quinase do Linfoma Anaplásico/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas de Neoplasias
19.
Biology (Basel) ; 13(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38392313

RESUMO

Soil-beneficial microbes in the rhizosphere play important roles in improving plant growth and health. Root exudates play key roles in plant-microbe interactions and rhizobacterial colonization. This review describes the factors influencing the dynamic interactions between root exudates and the soil microbiome in the rhizosphere, including plant genotype, plant development, and environmental abiotic and biotic factors. We also discuss the roles of specific metabolic mechanisms, regulators, and signals of beneficial soil bacteria in terms of colonization ability. We highlight the latest research progress on the roles of root exudates in regulating beneficial rhizobacterial colonization. Organic acids, amino acids, sugars, sugar alcohols, flavonoids, phenolic compounds, volatiles, and other secondary metabolites are discussed in detail. Finally, we propose future research objectives that will help us better understand the role of root exudates in root colonization by rhizobacteria and promote the sustainable development of agriculture and forestry.

20.
Front Immunol ; 15: 1328145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38298192

RESUMO

Despite the clear benefits demonstrated by immunotherapy, there is still an inevitable off-target effect resulting in serious adverse immune reactions. In recent years, the research and development of Drug Delivery System (DDS) has received increased prominence. In decades of development, DDS has demonstrated the ability to deliver drugs in a precisely targeted manner to mitigate side effects and has the advantages of flexible control of drug release, improved pharmacokinetics, and drug distribution. Therefore, we consider that combining cancer immunotherapy with DDS can enhance the anti-tumor ability. In this paper, we provide an overview of the latest drug delivery strategies in cancer immunotherapy and briefly introduce the characteristics of DDS based on nano-carriers (liposomes, polymer nano-micelles, mesoporous silica, extracellular vesicles, etc.) and coupling technology (ADCs, PDCs and targeted protein degradation). Our aim is to show readers a variety of drug delivery platforms under different immune mechanisms, and analyze their advantages and limitations, to provide more superior and accurate targeting strategies for cancer immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Imunoterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...